Tag: Internet of Things

How Can We Prepare Ourselves For Healthcare IoT?

By Tim Mullahy, executive vice president, Liberty Center One.

Tim Mullahy
Tim Mullahy

Remote monitoring. Smart sensors. Better communication and overall patient care. The internet of things has some incredible applications for the health industry — assuming we can overcome the security challenges it brings with it. But where do we start?

The potential of the Internet of Things to revolutionize the world has already been well-documented – as has its potential security shortcomings. I don’t believe it’s hyperbole to call IoT one of the most disruptive digital technologies ever developed, if not the most.  But that disruption can easily be a double-edged sword.

Consider the healthcare industry, for example. Hospitals, care providers, and covered entities regularly work with some of the most sensitive data in the world, subject to some of the most stringent protections. They have an inarguable duty of care to keep protected health information (PHI) out of the wrong hands.

Incautious application of IoT technology runs directly counter to that duty of care.

Yet hospitals and other healthcare agencies use the Internet of Things for everything from maintenance and monitoring to patient care — nearly 60 percent have introduced IoT into their facilities, and 87 percent plan to implement more technology by next year. And of those organizations, 89 percent have suffered from some form of IoT-related security breach.

Unless you want your organization to be included in that statistic, you’re going to need to take a step back and re-examine your security practices. The Internet of Things is by its very nature unlike any technology you’ve used in the past. What that means is that it requires a completely different approach.

You must have some way of monitoring, managing, and locking down any endpoints that might have even a passing connection to patient data. You need to implement new processes and procedures regarding how devices are used and interconnected within your organization. Finally, you need to be aware of PHI no matter where it is and who’s using it — and if someone is accessing it who shouldn’t be, you need the capacity to lock down their access and protect that data.

For an industry where even standard IT can prove challenging, that’s a pretty intensive list. It’s a small wonder, then, that many healthcare organizations choose to work with managed services providers rather than deal with things internally. And if, after a security assessment, you find that your own IT staff lack the expertise, that might be the best bet for you as well (at least until your staff can receive proper training).

Of course, selecting an IoT services provider comes with its own laundry list of challenges. You’ll need to school yourself in the tactics and language the bad eggs use to try to lure in new clients, and you’ll need to ensure that any providers you work with are fully HIPAA-compliant. There are a few signs you should look out for in that regard:

Continue Reading

MedTech Breakthrough Awards Announced

One of the most recognized annual awards programs in the world today—the MedTech Breakthrough—has recently announced the results of its 2018 awardees. Evaluated by an independent expert panel, the nominees were carefully examined, and winners were selected based on various considerations. Awards were given according to the following categories: medtech leadership, clinical and health administration, patient engagement, electronic health records, genomics, internet-of-things (IoT) healthcare, medical data, mobile communication and telehealth, healthcare cybersecurity and medical devices.

This award program is a testament to the continuous innovations in the field of medicine brought about by the incorporation of various technological advancements in other fields of science.

The Progress of Medicine

The progress of medical science at present is obviously at its zenith as compared to its level of progress in the past. Medicine, for example has existed for several millennia, and most of it was largely non-scientific, for in earlier times medicine was closely associated with religious and superstitious beliefs.

In our contemporary time, however, every aspect of medicine seems to be innovating at an unprecedented pace, and other technological advancements in fields like physics, genetics, computer programming and engineering, and chemistry seem to be all contributing to the progress of medical science and medical institutions.

By simply looking at the above mentioned awards distributed by MedTech Breakthrough, for example, you would immediately see the inclusions of the internet-of-things, genomics, medical data, mobile communications and electronic records, all of which seem to have a somewhat detached relationship to medical science. Yet, it is obvious that the progress of medical science can no longer be isolated from other technological advancements.

Medical Science and Alternative Medicines

Medical science has slowly detached itself from alternative medicines by strictly subscribing to the scientific method in the diagnostic and treatment of diseases. If a medical practice, therefore, is based only on alternative medicines without the backings of scientific studies, it is presumed to be based on unwarranted assumptions without scientific merit. Scientific medicine, however, does not peremptorily debunk the efficiencies of alternative medicines, for that would be unwise. What it is debunking is the method by which alternative medicines assume the efficacious of their alternative methods of treatments.

A good point of reference would be the practice of chiropractic. Chiropractors for example, start with the premise that diseases are simply indicative of the effects of subluxations. They focus then on the detection and eventual correction of vertebral subluxation to heal maladies. Although there are mixer chiropractors who combine diagnostic and treatment approaches from different osteopathic viewpoints, most of them still solely attribute diseases to subluxation. Yet, subluxation and its relationship to a disease is really hard to prove scientifically.

Continue Reading

Healthcare’s New Mobile Age

Guest post by Edgar T. Wilson.

Edgar Wilson

Mobile technology is impacting every element of American healthcare–from insurance and billing to documentation and caregiving, the impacts are being felt. The truly transformative element of the mobile revolution is not the technology itself, or the way it changes the look and feel of the tasks it affects. Despite complaints of the depersonalizing effect of technology, the ultimate value of mobile in the sector will be how it enhances and encourages communication.

Providers are Going Mobile

Already, flexibility and functionality have already drawn providers to mobile devices and solutions. Voice-to-text technology and similar automated solutions are in the offing to relieve the documentation burden that has dampered some amount of enthusiasm toward digitization. Bolstered by these advancements, caregivers will go from subjects of their EHRs to masters of patient encounters.

One of the huge benefits of mobility — as opposed to simply being networked on desktop computers or having a digital health records solution — is the capacity for greater native customization and app development. Native apps are like the currency of the mobile, smart device world providers are entering. Developers can deliver personal, branded interfaces that allow doctors to choose precisely how they want their dashboards to look, giving their EHRs a custom touch that has been sorely lacking throughout their implementation.

App-centric development will further reduce the friction of adoption and utilization, giving doctors a sense of empowerment and investment, rather than the bland inertia that has carried digitization thus far.

The personalization of the technology through app development will help boost adoption, and return the focus to what the technology enables, rather than how it looks or what it has replaced. Mobile technology’s strength will be in reconnecting doctors and patients, and creating bridges of data and communication across the continuum of care.

Patients are Going Mobile

Patient-facing health apps and mobile point of access to care combine convenience and cost-saving with a learning curve. Increasing the visibility of EHRs through mobile portals gives patients greater reason to develop some basic health literacy, and levels the playing field during doctor encounters. The more providers use mobile solutions, the more incentive patients will have to do the same.

When apps are connected to prescription management and can monitor adherence to treatment plans, mobile devices provide a two-way mirror enabling doctor and patient to remain connected long after the encounter is over. This can allow providers to better anticipate and intervene where drug abuse is at risk, as well as to prevent ED admissions and re-admissions beyond what telehealth has been able to achieve.

Even without connecting providers, mobile health apps will also support personal health management, with an eye to prevention as well as education. From diet-planning to workout tracking and even disease management, patients have more ways than ever to study their bodies and better understand their unique wellness needs. As providers and their EHRs evolve to integrate mobile patient-generated data, the potential for customization will make each encounter more conversation-driven, using data as a platform to educate, engage, and advance communication.

All these personal, data-rich conversations will help push prevention and population health into front of mind for a generation.

Continue Reading

Wireless Medical Technology: The “Why” Is as Important as the “How”

medical-deviceThe Internet of Things (IoT) is taking hold in nearly every aspect of our lives. No longer are we content with simply connecting via a computer or mobile device. These days, our homes are filled with connected devices, all purporting to make our lives easier, more efficient, and in many cases, more entertaining.

However, the IoT’s creep isn’t limited only to our homes. One area where IoT is already taking hold and is expected to grow even more is in the health care industry. Often referred to as Medical IoT (or just connected medical devices), the adoption of connected devices is already at impressive levels and the trend is for even more devices to be accessible via the internet in the future.

For example, it’s not uncommon to find patients using wearable devices to collect and transmit data about their blood sugar, blood pressure, heart rate, and oxygen rate to their physicians, or to find wireless devices within hospitals that automatically transmit patient vital signs and other monitoring data straight from the hospital room to hospital staff, no matter their location.  The assumption is that thanks to such continuous monitoring and real-time data, physicians can provide better quality care and improve patient outcomes.

Undoubtedly, the IoT certainly creates a great deal of opportunity within health care to deliver better outcomes. At the same time, though, there is also the question of the true value of connected devices in every circumstance. The fact is, while there is a certain “cool” factor associated with IoT technology, and a sense of wonder at the fact that a device can transmit data wirelessly, there is also a concern that developers will attempt to include connectivity just because they can. Unless the technology aligns with user expectations and behaviors, is reliable, and delivers actual meaningful outcomes — and doesn’t just add an unnecessary feature to the device — it is unlikely to be successful.

Therefore, when developing connected medical technology, it is just as important to consider why you are connecting it as it is to consider how you will connect it. Often, the how isn’t nearly as complicated as one might think, thanks to relatively inexpensive and widely available microcontrollers and applications. The why, on the other hand, is more complex, and requires developers to consider not only the potential benefits of connecting a medical device, but several other key points as well, among them the potential for data overload, the security of the devices, and addressing potential malfunction, to determine whether a device can benefit from connectivity.

Chief Concerns for Connected Medical Devices

While there are plenty of points to consider when developing any type of medical device, when the device is designed to be connected to the internet, there are additional things to think about.

Continue Reading

How IoT is Helping to Address Chronic Disease Management

Guest post by Susmit Pal, healthcare strategist, Healthcare & Life Sciences, Dell EMC

Susmit Pal
Susmit Pal

Aging populations and the rising incidence of chronic disease consume a disproportionate amount of healthcare resources. In the United States, about 75 percent of healthcare dollars go to chronic disease care and two out of every three Medicare recipients suffer from at least two chronic diseases.[1] The pressure for relief will grow as the population ages with approximately 10,000 new patients estimated to enroll in Medicare every day for the next 15 years.[2] The current demand for resources for chronic disease care combined with the imminent spike in Medicare enrollment beg for achievable solutions and strategies that address costs, care quality and outcomes in the short term.

Enter the Internet of Things (IoT), also referred to as the Internet of Medical Things (IoMT) within the healthcare industry. IoT is something that most are well-familiar with, but for the sake of clarity, we define it here as the purposeful connection of intelligent sensors, devices, and software to computer networking systems using Bluetooth, Wi-Fi, RFID or M2M wireless technology in order to promote an inter-functionality that serves a greater purpose. In healthcare, that greater purpose is the achievement of less costly and more information-driven and efficient patient care. Think wearable devices and wireless pill bottles, nanotechnology and ingestibles, and network-enabled medical devices like stethoscopes that can transmit cardiac data directly into a patient’s electronic health record (EHR).

The Impact on Chronic Disease Management
IoT shows great promise in helping to improve the health of patients with chronic conditions. Combinations of remote monitoring, analytics and mobile platforms have repeatedly cut re-admissions of high risk patients with congestive heart failure (CHF) by more than half.[3] Evermore affordable and easier-to-use devices, such as wireless scales and heart rate and blood pressure monitors are improving overall wellness for the chronically ill. In fact, some researchers estimate that the value of improved health in patients with chronic disease using remote monitoring could amount to $1.1 trillion per year by 2025.[4]

At the consumer level, the rapid increase in the type and variety of personal mobile fitness trackers like Fitbit®, and online fitness applications for consumers demonstrates comfort with IoT to monitor physical health. Their very existence has created an avenue for patients to become more accustomed to tracking and managing their health online. In response, healthcare organizations are beginning to incorporate them into their consumer engagement strategies, while payers are starting to offer discounts and incentives tied to wellness management.

IoT is also helping to spur on some rather exciting new technological advancements in chronic disease management. Connected wheelchairs, for instance, are enabling people with disabilities to engage with care providers on a whole new level, communicating health alerts to care teams and repair notices to manufacturers. A group from the University of Missouri is spearheading a development project to utilize home monitoring sensors in an effort to prevent falls among the elderly by providing alerts to the patient when there is a fall risk, while Dell Healthcare is working with hospitals to leverage the use of tablets with integrated card readers to enable remote healthcare for home-based treatments.

There exists an even greater potential for IoT to impact chronic disease management at a population-level when combined with data analytics. For instance, Health Net Connect (HNC) has initiated a population diabetic management program with the intent to improve clinical outcomes and healthcare savings for diabetes, one of the deadliest and most costly of chronic diseases—and the results are impressive. They captured vitals and blood work from study participants over a 6-month period to measure the impact that routine teleconferencing and patient monitoring had on outcome. Patients in the program showed a significant decrease in key biomarkers, including 9.5 percent lower HB A1C and 35 percent decrease in LDL. To put that into perspective, for every 1 percent drop in HB A1C they estimate an $8,600 annual savings, and for every 1 percent decrease in LDL there is a 1 percent decrease in coronary heart disease, which costs on average a million dollars over a lifetime. HNC is continuing this program, noting that “this project has, and currently is demonstrating return on investment with cost savings, improved access for program members to their physician, improved clinical outcomes, and improved knowledge by program members on their disease condition.”[5]

Continue Reading

How the Internet of Things Will Reshape Healthcare: One Experience at a Time

Guest post by Puneet Gupta, chief technology officer, Brillio.

Puneet Gupta
Puneet Gupta

For those in the healthcare industry, the future feels at once full of promise and always just out of reach. Transformational advances in technology are on the horizon and fast approaching—but anticipating and adopting new tech can seem like an impossible task.

Perhaps the most promising tech trend for healthcare is the Internet of Things (IoT): the increasingly interconnected network of intelligent devices and objects that share data and enable the physical world to be integrated into digital systems.

While nearly every industry can employ IoT systems to create greater efficiencies and support new business models, the healthcare industry is particularly poised for major gains. According to a recent report, IoT in healthcare alone will be a $117 billion market by 2020.

IoT technology and digital integration has enormous potential to create meaningful experiences and better outcomes for patients, doctors, and healthcare professionals. And yet, amid all this promise, the current state of healthcare IoT leaves a lot to be desired.

How Healthcare Companies Need to Re-Imagine Change

Why is IoT adoption still lagging in the healthcare industry, despite all this potential? Many companies are simply thinking about technological change the wrong way.

Naturally, most people try to think about such changes from a 30,000-foot perspective. IoT is such a huge strategic transformation, it’s easy to get overwhelmed and not know where to begin.

I prefer to look at things differently. Instead of surveying major paradigm shifts from a million miles away, let’s flip the model and focus in on micro-experiences—small, concrete touch points along a user’s journey where technology can make a meaningful intervention.

By building from the ground up in real-world contexts—instead of from the top down in the abstract air—you’ll be able to quickly implement a number of IoT solutions and see the impact. Overarching systems will organically develop up over time as you create valuable micro-experiences on the ground.

While contemplating a global shift only generates new questions, breaking IoT down into bite-sized, tangible moments grounded in reality opens the door for immediate achievements. That’s what we call the art of the possible.

4 Examples of IoT Micro-Experiences in the Healthcare Industry

 In the spirit of focusing on context and individual instances, let’s look at four real examples of how we’ve deployed IoT micro-experiences in healthcare.

Continue Reading

3 Ways Big Data and IoT Can Improve Our Health

Guest post by Alexandra Roden, content editor, Connexica.

Alexandra Roden
Alexandra Roden

Just a few years ago, big data and the Internet of Things (IoT) were terms generally unheard of. This year they continue to revolutionize technology and the ways in which we acquire and process data, but what do they mean for the healthcare industry?

Xenon Health describe IoT as “a phenomenon through which the operational aspects of the physical world become increasingly integrated with digital platforms, enabling information to move seamlessly toward the computational resources that are able to make sense of it.” Essentially, IoT goes hand-in-hand with the mobile age and the diversity of data that is currently being retrieved from agile and mobile locations.

Big data is a related concept – it addresses the ever-increasing amounts of data that are created every second of every day and recognizes that these figures will only continue to grow. For example, in the “social media minute” every single minute there are 277,000 tweets are sent, Whatsapp users share 347,222 photos and Google receives more than 4,000,000 search queries. These figures are remarkable even for those of us caught up in the social media hype, and most shocking of all is the realization that the global Internet population now represents 2.4 billion people. That’s a lot of people creating a lot of data – the question now is how we can utilize this data in a meaningful way.

IoT has revolutionized many industries and will continue to do so in the foreseeable future, but what about healthcare? Organisations within this industry tend to adopt new technologies slowly, relying upon solid evidence and demonstrable impact and efficiency before committing to any such change. The shift towards IoT is, however, beginning to take place, and increasing amounts of available patient data are beginning to inform decision making processes within this sector.

What will this mean for the future of our health?

Continue Reading

Cybersecurity Concerns In the Age of Digital Health

Guest post by Eduard Goodman, chief privacy officer, IDT911.

Eduard Goodman
Eduard Goodman

Earlier this year, Centene Corporation lost six hard drives containing personal and health information of almost one million of its clients, including names, addresses, dates of birth, Social Security numbers, member identification numbers and health information. Unfortunately, Centene is only one of many healthcare organizations that recently had their sensitive patient information exposed. More than 113 million health records were breached in 2015 – which translates to one out of every three Americans being affected by a healthcare record breach last year. Medical identity theft is a disastrous trend that needs to be addressed. The good news is there are many steps healthcare organizations can take to reduce the risk of data breaches.

Electronic Health Records

As more and more healthcare organizations transition away from paper medical records and move to electronic health records, it is critical that security features are put in place to protect the vast amount of data being collected. Just as the digitally stored health information is more easily accessible for employees, it is also easier for cyber criminals to access.  According to the Ponemon Institute’s The State of Cybersecurity in Healthcare Organizations in 2016 report, nearly half of those surveyed said their organizations have experienced an incident involving the loss or exposure of patient information during the last year. Strong encryption, routine vulnerability patches and multi-factor authentication are key to protect health data.

Mobile and BYOD

Greater connectivity means more convenience, but this also opens more doors for hackers to access healthcare networks. Healthcare organizations should set clear BYOD policies so employees understand what can and cannot be accessed from mobile devices, what operating systems are approved for use on the network, what security features and settings are required and what type of data can be stored on devices. While using mobile devices can significantly improve productivity, it is important to minimize security risks in order to protect sensitive data.

Internet of Things

The Internet of Things is a growing trend in the tech world that has also become popular in the healthcare industry. Now, medical devices can collect, track and share enormous amounts of data instantly through internet connectivity. As these medical devices were most likely added to pre-existing networks, they may not have the necessary security protections. Security vulnerabilities are not just limited to EHR and health networks anymore – medical devices must be thoroughly inspected as well. Just as computers and servers are patched for vulnerabilities, medical devices that connect to healthcare networks must also be regularly patched. If these IoT enabled devices do not have the necessary layers of security, they will become an easy target for hackers to access the healthcare network.

Continue Reading

The Medical Internet of Things: What You Need to Know

Guest post by Paddy Padmanabhan, CEO, Damo Consulting.

Paddy Padmanabhan
Paddy Padmanabhan

Gartner has estimated that some 6.4 billion connected things will be in use by the end of 2016, with some 5.5 million new things getting connected every day. There’s been a clear boom in health and fitness wearables, with healthcare consumers investing in tracking devices – sometimes with their employer’s encouragement – and the MedTech industry has jumped on this in a big way.

Fascinating IoT applications are being developed today, often through unlikely partnerships. For example, medical devices company Medtronic is developing an application that transmits wearables data to the IBM Watson cognitive computing and predictive analytics platform. And Swiss pharma company Novartis is joining hands with Qualcomm to develop an internet-connected inhaler that can send information to a cloud-based big data analytics platform for healthcare providers to use in treating patients. These are exciting examples of how technology and analytics can support personalized medicine.

However, there are a couple of big issues that the IoT movement has to contend with when it comes to the Medical Internet of Things (IoT). These issues concern us as consumers, and they also concern our employers and our healthcare providers equally.

Data security: The medtech industry is widely seen as unprepared for the security risk and vulnerability to hacking that their devices can cause for the rest of the healthcare system. This has immediate repercussions for consumers who may be unaware of the exposure of their personal medical information to cybercriminals. In addition, as healthcare providers start using medical information from these interconnected devices in a cloud-based environment, their enterprise IT, specifically electronic health record (EHR) systems, could be seriously compromised and vulnerable to hackers. And this brings us to the other, emerging issue that is beginning to get some attention in the exchange of IoT data.

Privacy and legal concerns: While there are undisputable benefits for healthcare consumers as physicians gain access to medical information from a range of connected devices, there is a real threat to privacy as well. We start with the question of who owns the data. State law in the U.S varies when it comes to this question, and device makers and other software providers may lay claim to the data which can be used against consumers. At the same time, collecting personal data through devices imposes a set of legal requirements on enterprises, starting with proper disclosures about the collection and use of the information.

Continue Reading

Delivering on the Promise of Healthcare Analytics: Troubleshooting, Intelligent Design and Predictive Modeling

Lauran Hazan
Lauran Hazan

Guest post by Lauran Hazan, director of healthcare analytics, STANLEY Healthcare.

Across nearly every industry, Lean process improvement and analytics have radically changed the way that businesses operate. Now, with the advent of big data and accompanying business insights, we’ve moved beyond troubleshooting problems to data-driven design and predictive analytics. The impact of these processes and technologies is felt at every level of the manufacturing supply chain. What happens when all of these innovations hit healthcare?

We’re already seeing many of them in action in hospitals across the world, which are now able to analyze the movement of patients, clinicians and equipment, thanks to RTLS and RFID – among the first Internet of Things (IoT) technologies. The central value proposition of IoT analytics and data visualizations in healthcare is that by providing clinicians and other users with actionable insight into their everyday processes, they will be empowered to understand and modify their behavior, and improve efficiency and the patient experience.

We know this technology works – revealing inefficient workflows, missing or insufficient levels of equipment, patients who have been waiting too long, and more. But acting on these insights to generate change requires more than technology. It needs visionary leadership to create cultural change, grounded in objective data and the real-time feedback it provides.

It’s no easy feat, and we’ve seen industrial engineers working to create change in healthcare for years. What’s different now is the data, which moves us beyond gut instinct or individual experience. Analytics in healthcare – based on objective and comprehensive IoT data – supports a constructive conversation about change, and can be used by staff at all levels to study the impact of an experimental process improvement. Hospitals can enable highly skilled workers to lead from within, rather than managing them top-down. They can leverage the experience and scientific mindset of clinical staff to identify new areas for growth, experiment to improve, measure success and continue to innovate with each new win.

That last point is perhaps the most important. For us to truly change healthcare, hospitals must develop a continuous cycle of improvement. This is what it means to be a Lean hospital in today’s data-empowered industry. Once the organization changes a practice or habit, it can study the impact of that change and then uncover other opportunities to improve further. The next set of practice changes may involve different measurements and metrics as the process of discovery continues.

Continue Reading