Tag: machine learning

The Rise of Chatbots In Healthcare

By Sachin Kalra, vice president of customer success, Infostretch.

Rapid advances in technology mean the chatbot market is now one of the fastest-growing segments in healthcare, with the market expected to be worth more than $314 million by 2023.

Sachin Kalra

In some ways, this growth is not surprising.  Combined with the commercial benefits for healthcare providers, there is a genuine appetite for more advanced technologies to form part of patients’ healthcare.  A recent study in the US revealed that more than half of consumers would use an app for remote general consultation if given the option, while research in the UK found that apps would be used by 47 percent of patients to book appointments, and 42 percent to manage prescriptions.

Before long, it is likely to be very commonplace for prescriptions to be re-ordered through your smart speaker, for medical appointments to be made by Alexa, and for medical disclaimers and drug side effects viewed in augmented reality (AR) via Google Home. In fact, chatbot applications such as these already exist as proof of concept projects and even, in some cases, as deployed systems in the US. The providers that successfully deliver systems like these which make the lives of patients fundamentally easier will inevitably gain mind share and market share, as the good news of the improved service spreads.

Beyond these immediate applications, the potential of chatbot systems in healthcare is virtually endless, limited only by the imagination and needs of physicians and their patients.

The three types of chatbot

Whether they’re employed in healthcare, customer service or simply for general consumer use, there are three main types of chatbot.

Most healthcare chatbot apps would typically fall into this latter, closed-domain category. Whatever the category of chatbot, so long as they provide users with an improved quality of experience, healthcare providers will be able to deliver a better service to more people at a lower cost.

Applying artificial intelligence

The performance of these chatbot apps – especially their ability to adapt as required – can be largely impacted by AI and machine learning technology, the application of which can enhance a number of areas.

By eliminating human bias from interactions, natural language processing can widen the topic of conversation, and increase the number of valid responses available to a chatbot. Of course, being able to answer a wider range of specific questions and provide more information will only make these apps more useful.

AI can also improve business performance for internal-facing bots which, in turn, will improve the customer experience for both practitioners and patients. Automating patient/admin interaction will enable more flexible scheduling options, for example, while the ability to more thoroughly convey information on side effects and conflicts from drug interactions will only improve patient outcomes.

What’s more, chatbots known as cognitive bots can use deep/machine learning to continually learn from their ongoing interactions, in order to provide more tailored responses to a patient’s needs. Accessing massive data sets and rapidly extracting insights from them is a task much better suited to AI versus humans who are limited by time.  Longer term, cognitive bots will deliver improved healthcare outcomes for more patients at a lower cost to the provider.

Adoption and appetite

The growth in the adoption of chatbot technology is likely to be organic. With each success that is achieved, a wider set of needs will be recognized and the technology developed further to address them. Its adopters will range from the largest healthcare innovators, where we would expect to see such innovation, to the smaller rural healthcare facilities who are set to benefit most from the resource and cost efficiencies it offers.

Within the last few years many of us have become accustomed to using Alexa, Siri and Google Home in our daily routines. As the healthcare industry continues to embrace chatbots, it won’t be long before we think nothing of asking them for medical advice, to carry out administrative tasks, or even to speak directly with our doctors. And given the rate at which this technology is evolving, who knows what the next few years might hold?

Machine Learning to the Rescue: The Unique Case of Pediatric Care

By Abhinav Shashank, CEO and co-founder, Innovaccer.

Abhinav Shashank

The Johnsons were blessed with twins the day before; two healthy baby boys, haphazardly named Jill and John in the health records. Definitely, this marks the start of pediatric services in the family. Hospital records set for the twins hardly mark any difference, gender, weight, parents, address; all records read the same. The only visible difference is a skin allergy with the second baby.

Their names were changed to Jack and Ross in a month, and records got multiplied by two. Vaccinations done within the first month were registered in the records of Jill and John, while Jack and Daniel got registered under fresh EHRs.

Is the pediatric space ripe enough for Machine Learning?

How should the healthcare industry deal with data redundancy or data hop, and maintain data integrity to ensure reliable records? This is a real serious concern for pediatric organizations.

However, to our rescue is machine learning technology aiding the critical issue of record matching and streamlining medical procedures in child healthcare. ML has the potential to revolutionize the pediatric care ecosystem and assist the major challenges in healthcare operations of the young population.

With the global healthcare market estimated to reach a sweeping $11,908 billion by 2022 and fast-growing problems in the younger population, there is certainly a vast frame of exploration for pediatric focus and care delivery for the young. Being a continuously evolving age group with tailored and sensitive healthcare needs at different stages of growth, the pediatric population is most challenged when it comes to successful reforms and insights.

How are EHRs doing injustice to the future of healthcare?

Kids from their birthdate are expected to face the EHR duplicity that scatters their record and essential medical data. The key facts of a newborn like weight, height, allergies, among others, are stored in an EHR that is occasionally hopped a month later, with a permanent name signing in.

Once a new EHR is registered with the new name, all medical information of the previous few months gets disconnected. This has a challenging impact on the entire care protocol. The critical notch here is incoherent vaccination and immunization information of the growing baby. Not only does it lead to seemingly real care gaps, but also ripples out to erroneous procedures and increased health costs.

Machine Learning is transforming the way services are delivered globally. Detecting the minutest of factors in an outcome, and cascading the learning over huge data, it can provide us with crucial considerations which are evidently present but still go unnoticed by us. ML is helping to deliver accurate algorithms for all domains. Applying ML to pediatric care is sure to transform the current scenario of care delivery for the younger population.

What are the major challenges pediatric organizations are facing?

We need strict adherence and care, not only to ensure healthy children but also to ensure optimized care procedures for them in the future. However, there are a lot of shortcomings in understanding and implementation of the medical requirements of the population aged 0 to 18.

The major challenges in this regard are:

  1. Most pediatric organizations today do not have precise and distinct health measures to evaluate the younger population. We need measures that can efficiently assess the patients on their growth-specific checkers, respectively.
  2. Patient records at different stages are difficult to merge, with inadequate data-merging proficiency.
  3. Data hop in EHRs during record matching or establishment. This is of critical concern for babies and toddlers who need consistent care episodes.
  4. Lack of customized reach to parents for time-sensitive immunization and vaccinations. This leads to missed appointments, which leads to complications and increased costs over time.
  5. Care plans including uncertainties to manage intelligent adherence. This will enable strong network functionality and improved care.
  6. Flexible and optimized timeline for care delivery.

Currently, about 50 percent of children under five years of age attend out of home care. Throughout childhood, children receive care at daycares, check-ups at community places, have physician visits at different pediatric facilities, among others.

It becomes essential to compile entire patient data at a single place to avoid redundant and erroneous procedures. According to the American Health Information Management Association, an average hospital has about a 10 percent duplication rate of patient records. A study by Smart Card Alliance in 2014 projected that about 195,000 deaths occur yearly in the US because of medical error, with 58 percent of them being associated with “incorrect patient” errors.

Does Machine Learning truly have the answer?

An article in the AAP News and Journals Gateway mentions that only 71.6 percent of young children in the United States have completed their primary immunization series. Moreover, evidence suggests that 10 percent to 20 percent of young children receive more than one unnecessary and extra immunization. Evidently, scattered records lead to a lack of timely, accurate and complete immunization. This can have serious repercussions on the health and care protocol of the patient, in addition to increased medical costs.

Machine Learning can nourish the split needs and resolve the errors of pediatric healthcare in different domains:

  1. Automatic Triggering for Episodes and Immunization: ML algorithms can be developed to track and prompt parents for necessary episodes and immunization. This will ensure timely care episodes.
  2. EMPI Matching: Enterprise Master Patient Index is a database of medical data across departments and healthcare organizations. Machines trained in pediatric EHRs can develop a robust algorithm to match patient records across hospitals and unify them.
  3. Streamlining Vaccinations: ML algorithms can regularize time-sensitive vaccination arrays for different pediatric categories as decided by the World Health Organization.
  4. Scanning Data Hops: ML algorithms can detect data gaps in procedures, and point out critical consequences enforcing timely merging of EHRs.
  5. Predicting Episodes and Costs: ML algorithms trained with localized pediatric data can detect underlying factors for an episode and predict the average costs for unforeseen episodes.

The road ahead

The pediatric population is foundational to a healthy nation and demands our attention to reform its split functionalities. Machine Learning can bring about unimaginable amendments in our current pediatric care management and delivery. Data, which is foundational to all ventures in the healthcare industry, can be merged with ML to close all care gaps and invest in a healthy tomorrow.

AI Is Not The Future, It’s Now

By Jeff Springer, senior vice president of healthcare solutions, CitiusTech; and Fernando Schwartz, vice president of data science and consulting, CitiusTech.

As consumers, we experience artificial intelligence (AI) every day. In fact, we’ve come to expect the consumer experience it enables, such as Amazon’s highly personalized suggestions for additional items we might like. Now is the time to gain AI’s rewards in healthcare as well. Dr. Eric Topol, founder and director of Scripps Research Translational Institute, put it this way: “If properly and humanely deployed, AI has the potential to restore efficiency to a wide array of burdensome healthcare processes, freeing up physicians to treat their patients in the way they deserve. The path won’t be easy, and the end is a long way off. But with the right guard rails, medicine can get there.” [1]

While there are significant challenges with interoperability, data sharing, and data access, organizations are taking several approaches to overcome them. With an incremental approach to data management and analytics, healthcare organizations can reap the benefits of AI – specifically machine learning (ML) and natural language processing (NLP) faster, enabling them to overcome challenges and achieve success in value-based care.

AI and Its Subsets

First, it’s important to have a shared understanding of AI concepts. AI is a term used to describe the ability of machine intelligence to imitate human intelligence through cognitive functions and behavior. Both ML and NLP are subsets of that broader concept. ML applies algorithms and statistical models that effectively perform a specific task or make predictions using patterns and inference. NLP enables computers to understand, interpret and manipulate human language using computational linguistics. At the highest level, these tools can be applied in healthcare to help find the answers to questions and identify root causes—leading to workflow improvements at a massive scale.

Technology Advances Speed AI Adoption

Advances in data and analytics technology are making it possible to significantly reduce implementation time for AI projects. From a data management perspective, five years ago, it would have taken two years to implement a strategy and infrastructure for data management needed for AI. Hence, many organizations applied a project-by-project approach and didn’t take advantage of the opportunity to reuse data for multiple projects. The results were data silos and missed opportunities to leverage data across the enterprise.

Today, new technology and new data approaches expedite projects from the data, analytics and learning perspectives. Specifically, today’s late-binding architecture enables organizations to take only the data needed for a question, metric or pattern, and then curate additional data as needed. This opens the door for going beyond the standard healthcare sources, such as claims, HL7, and CCDA, to also include historically cost-prohibitive data, such as social media, benefit information and unstructured data. These data sets can be leveraged to determine the most effective engagement models, risk patterns and communications. Today, if organizations start by asking the right questions before implementing a new data set, they could have answers in as little as three months, rather than years. By leveraging existing infrastructure and data in conjunction with new technology, organizations can begin to see success more quickly, while building out an incremental, long-term strategy.

Putting AI to Work Answering Healthcare Questions

When organizations take advantage of the new technologies that enable sophisticated data analytics, they can more easily apply ML and NLP to specific data sets. Start with a question and determine what data can best provide answers. The examples to follow illustrate questions organizations might ask to improve clinical outcomes, revenue assurance, or operational efficiency.

Clinical Best Practices: Using ML, healthcare organizations can more effectively analyze treatment patterns by asking questions, such as: What interventions during a clinical encounter help avoid sepsis? Or how can an ED visit be prevented? Once there is an understanding of what contributed to positive outcomes, organizations can embed care protocol improvements within clinical workflows.

Population Health: Again, using ML, organizations can thoroughly analyze populations, treatment patterns and results by asking questions, such as: Which segments are having trouble and how can they be addressed? Are issues arising that are related to geography, benefit structure, or disease pattern? ML can be applied to sift through many dimensions and identify root causes. For example, a member of a diabetes population segment lives within a certain zip code, sees a certain provider, and is more likely to be readmitted. By asking the right question, variations in care can be identified, and protocols and workflows can be adjusted to improve outcomes.

Utilization Management: Healthcare organizations, especially ACOs, strive to improve quality while tightly controlling costs. Using ML, organizations can look for variations in practice patterns across providers, patients and conditions. From there, organizations can implement protocols that operationalize utilization management. For example, duplicate exams, such as expensive MRIs, can be avoided by making recent results available to providers at the point of care. And providers can be guided to the most cost-effective location for a given procedure or exam.

Data Aggregation: Even with standard EMR implementations, there can be tremendous variation in how certain types of data are captured. For example, data points needed for population health management may be captured in data fields and as unstructured text. Using NLP, healthcare organizations can now parse many different types of data from many sources. This enables access to data for risk-based contracts, such as social determinants of health like transportation, weight loss, food insecurity, and electricity.

Apply AI to Gain Quick Wins in Quality Improvement

With today’s technology, healthcare organizations can move more quickly to take advantage of AI, especially ML and NLP— seeing results in months rather than years. With modern data and analytics approaches, organizations can proceed incrementally to identify questions, metrics or patterns that deliver quick wins in clinical, financial and administrative outcomes. At the same time, these achievements contribute to a successful long-term strategy to continuously improve quality and outcomes while assuring appropriate payment in today’s value-based care environment.


[1] Miliard, Mike, “Eric Topol: EHRs have ‘taken us astray,’ but AI could fix healthcare in a ‘meaningful and positive way.” Healthcare IT News, March 12, 2019.

Reasons Why Cyberattacks In Healthcare Can Have Devastating Consequences

By Xu Zou, CEO and co-founder, Zingbox.

Xu Zou

Recent research was published by the Washington Post about malware that was created to disrupt medical imaging equipment and networks. This is yet another wake-up call for the healthcare industry that been underinvesting in security for the last decade. Quite simply, there is a misconception that hospitals’ internal networks are a safe harbor from external cyberattacks. This is despite the fact that the real-world data has repeatedly shown that healthcare is one of the top industries under attack for the last five years. While previous attacks mainly focused on stealing personal health information, this research demonstrates how serious or even deadly an attack to healthcare can be.

There are a few reasons why cyberattacks in healthcare today can have devastating consequences.

Medical device vulnerabilities

Many medical devices inside hospitals are running decade old operating systems and applications that have many well-known vulnerabilities. In fact, it may be a surprise to many that the vast majority of imaging systems run on Windows OS. Further, recent Zingbox research shows that today, 1 out of 4 imaging systems run on OSes that are no longer supported. By next year, 85% of imaging systems are expected to run on End-of-Lifed OSes as Microsoft terminates support for some of their popular Windows OSes.

To make matters worse, most medical device manufacturers lack strong in-house cybersecurity expertise. While their expertise lies in device reliability and accuracy, which continue to be top requirements for connected medical devices, the lack of cybersecurity expertise puts the device reliability and accuracy into question. The lack of cyber-specific expertise also limits manufacturers’ ability to “bake in” cybersecurity measures on the device.

One might think that patches and upgrades are the answer. Unfortunately, no. FDA certification and other requirements pose significant hurdles for manufacturers to apply patches or upgrades to devices already deployed at hospitals.

Tools designed for IoT

Many hospitals lack the tools to monitor life-critical devices with 100% assurance of uninterrupted service and care. Such tools must be completely transparent to the device and in no way interfere or hamper its operation. Yet, organizations continue to rely on traditional IT security solutions for IoT. Such network security tools like firewalls and antiviruses result in security gaps that hackers can easily exploit.

Vulnerabilities that stem from inadequate IoT security tools:

Continue Reading

Bringing Artificial Intelligence To Healthcare: Enhancing Risk Models To Predict the Future Cost of Care

By Abhinav Shashank, CEO and co-founder, Innovaccer.

Abhinav Shashank

Once while I was scrolling through the news feed on my phone, there was one specific line that really made me wonder:There’s a 40 percent chance of gusty and blustery winds today.” Statements such as this one strongly influence people’s behavior, as they are based on evidence or data findings from years of surveying, studying, and analyzing past trends and occurrences. However, my question is “Why are we not able to make such claims in healthcare- even today?”

Can we predict the vulnerabilities a patient might face in the future or the current health risks a population segment faces?

Is risk scoring the answer we have been looking for? 

Almost all kinds of care organizations have some risk scoring methodology to target care interventions. With quality, costs, and patient experience taking the center stage in healthcare, care organizations need to stratify patients based on their need for immediate intervention.

The need of the hour is to address high-risk issues that impact large groups of patients and ensure that these needs are met in a timely fashion. Often, frequent fliers among high-risk patients come into the emergency department as if it’s their second home.

What if we take the method of risk scoring to a whole new level?

Traditionally, providers and health systems have relied on claims-based risk models, such as CMS-HCC, ACG and DxCG, which were built to forecast the risk of populations/sub-populations but not for individual patients. Hence, these models give an accurate prediction of the average risk of the population but exhibit very poor accuracy if used to predict risk for individual patients.

Although risk scoring has turned out to be a key factor in addressing the needs of the patient population, this method cannot provide all the important insights that are needed to drive necessary interventions. Since healthcare already has the right data from sources such as EHRs, claims, labs, pharmacy, social determinants of health (SDoH) and others, can we predict the future cost of care instead of just stating the risk score of the patient?

The right machine learning-driven approach to predict the future cost of care for patients

It all starts with the right data. The first step is to integrate the data from multiple sources- whether it is clinical or non-clinical data, such as SDoH. The data from these sources can allow us to use the comprehensive patient’s data for multiple predictive models to predict future health cost with greater accuracy.

Continue Reading

Best Health Technologies In 2019 That Executives Should Look Into

By Harry Conley, health writer, LuckyAssignments.com and GumEssays.com.

Harry B. Conley

Healthcare technology is advancing quickly and this is precisely why executives need to be aware of all new technologies that can make their healthcare organisation more efficient and more impactful. This may seem difficult – staying on top of things and implementing new technologies always is, but it brings immense benefits and great results. While many technology advancements come with all that fame that is often not necessary, it can make patient satisfaction better. It can also improve cost savings and this is really important for the future of your organisation.

So, in this spirit, here are some of the most amazing tech advancements that can help your healthcare organisation become better and take another step towards the future.

Blockchain

Blockchain can make interoperability ai reality. You can solve many problems between healthcare organisations and it’s a solution that healthcare industry has been looking for for many years. It can decentralize the record systems and have multiple locations that can be shared with more stakeholders. This will help the healthcare system immensely and it can operate within different stakeholders in the healthcare systems. Instead of having a single client database, you can include both clinical and financial data on one server and in an independent, transparent database.

“Blockchain technology can share data in a safe system and put the clients and their needs at the center of the attention. Still, healthcare industry is a decade away from implementing blockchain in a meaningful way,”says Ingrid Fulton, a tech editor at Draft beyond and ResearchPapersUK.

Artificial intelligence

Artificial intelligence can help with better oncology. Veterans Affairs is helping with this as a part of their precision oncology program which supports patients that have stage 4 cancer and that have tried all other methods of getting better. They are using AI to help use cancer data in the treatment of these patients. They are also veteran.

They treat more than 3.5 percent of patients in the US and this is the largest group of patients with cancer within any healthcare groups. This includes veterans from rural areas where it has been hard for them to implement better technology, especially something of this value.

Continue Reading

Digital Health Trends To Watch In 2019

Technology is the new creed that has literally touched almost every aspect of our life. Be it communication, traveling, or exercising, we are always interacting with technology. However, healthcare has always been considered a very conservative area in terms of technology deployment. This is because, in its very nature, healthcare mainly deals with human life which calls for utmost precaution. But the emergence of machine learning and artificial intelligence has sparked innovation and a myriad of solutions that are already working in the healthcare industry.

At the forefront of this growth are Android-powered smartphone devices. It’s estimated that 88 percent of all the devices sold in the last quarter of 2018 were all powered by Android. It shouldn’t then come as a surprise that companies are looking to hire Android developers to build health-care related apps.

But what does the future hold for tech solutions in the health industry? In this article, we are going to look at the trends in healthcare to look out for in 2019 and a few examples of apps for healthcare.

Artificial Intelligence and Machine Learning

“If you’re arguing against AI then you’re arguing against safer cars that aren’t going to have accidents, and you’re arguing against being able to better diagnose people when they’re sick.” – Mark Zuckerberg during a live Facebook video in 2016.

Artificial intelligence and machine learning are getting increasingly sophisticated to the extent of surpassing human capability and the potential for these two technologies in the healthcare ecosystem are huge.

One of the biggest potential benefits of AI in 2019 is helping people to stay healthy without consulting a doctor, or at least do it less often. Coupled with the Internet of Medical Things (IoT), AI is already being used to develop consumer health apps that proactively show patients how to stay healthy.

Moreover, AI is increasingly being used by healthcare professionals to gain deep insights and better understand of routine patterns occurring in patients. With these deeper insights, the caregivers are able to give better diagnosis, guidance, and support to the patients. For instance, the American Cancer Society is already using AI to detect cancer at the initial stages with 99 percent accuracy.

Product development is another area that AI and machine learning are being used. R&D in the medical field can be painstakingly slow and costly given that hundreds of variables need to interact with each other. Today, medical researchers are using AI to safely explore biological and chemical interactions of drugs using the discovery process and clinical data.

Another area you can get artificial intelligence in healthcare is through workflow optimization. It helps automate repetitive tasks such as routine paperwork, patient scheduling, and time-folio entry.

Wearables and Augmented Reality

I do think that a significant portion of the population of developed countries, and eventually all countries, will have AR experiences every day, almost like eating three meals a day. It will become that much a part of you.” — Tim Cook at the 2016 Utah Tech Toursource.

Virtual wearables and augmented reality devices are other emerging healthcare trends proposing to make significant advances in the healthcare space in terms of diagnosis and medical education.

On one side of the scale, virtual reality superimposes a patient in an artificially created surrounding, whereas, augmented reality helps generate layered images to real like objects. As a result, these technologies are and will continue being used by emergency response services providers to relay critical first aid information before the first responders arrive at the hospital.

In the prevention and diagnostics front, VR/AR has allowed medical care providers to create and manipulate different camera colors to reflect or replicate pre-existing effects in their databases.

But perhaps, the biggest impact of VR can be seen in 3D reconstructions of human organs. This has proven important especially when surgeons need to re-create the exact size and positioning of human organs before conducting complicated surgeries. Having the same exact replica of human organs give surgeons the know-how on how to deal with particular organs no matter how small they are.

In terms of medical education, both VW and AR have been great tools in transforming the way students learn. Surgeons are able to rehearse surgery procedures using dummies quicker and without having to use actual human bodies.

Telemedicine

“The evidence supporting the role of telemedicine is strong. Studies have shown that telemedicine promotes continuity of care, decreases the cost of care, and improves patient self-management and overall clinical outcomes” — Stephen Agboola, MD, at the 2016 Annual Partners Healthcare Connected Health Symposium.

The internet age has brought along profound changes in the telemedicine landscape. In the earlier years, telemedicine was strictly limited to doctor and nurse consultation. However, the proliferation of smart mobile devices that are capable of transmitting high-quality videos has opened up avenues for virtual healthcare services from specialists to patients straight in their homes. This is especially paramount in remote areas where doctors can’t easily reach.

Continue Reading

3 Ways AI Could Help the Healthcare Industry

Artificial intelligence has the potential to revolutionize all fields, and healthcare isn’t exempted.

This technology, which involves machine and deep learning, enables computers to gain the capacity to better understand and process complex forms of data. Essentially, they would have the ability to learn through examples.

When implemented correctly, it’s a development that comes with many possibilities, especially in a data-driven field like healthcare. Machine learning has the potential to improve patient care, provide faster service and diagnoses, and generally provide a better experience for both healthcare providers and patients.

Anyone involved in healthcare (which basically means everyone) can stand to gain from learning more about how AI might affect the industry.

Continue Reading

It’s 6 a.m.: Do You know Where Your Patients Are? And Where They’ll Be Next?

Guest post by Dan Hickman, chief technology officer, ProModel.

Dan Hickman
Dan Hickman

With six in 10 U.S. hospitals functioning at operational capacity, patient flow optimization provides one of the most cost-effective ways to increase a hospital’s bottom line.

Around 6 a.m. every day, hospital-wide “huddles” occur to discuss and determine a collective understanding of the state of operations. Most of these huddles take less than an hour and provide hospital and departmental leaders a snapshot of census status and expected discharges.

But hospitals are complex, dynamic systems. By 7 a.m. a flood of patients could hit the ED, affecting everything from staffing to the census, and carefully crafted plans disintegrate.

Consider the current state of patient flow at most hospitals.

Most health systems today have a reactionary approach to admit, transfer and discharge (ADT), patient flow, census, and staffing. Moreover, there is no way of accurately predicting future patient flows to right-size staffing and optimize workflows.

Discharge processes are open loop, resulting in costly delays. Most hospital staff use spreadsheets stating the number of discharges planned for the next 48 hours. However, there is no way to look at patient census with diagnosis codes tied to the typical length of stay.

The current state of patient flow results in multiple problems:

Hospitals are really good at examining what’s happened to a patient in the past. The staff knows where they’ve been, but they haven’t taken the next leap, which other industries have, at projecting out where they think patients will “flow” during their stay and how the next 24 to 48 hours could affect the status and the census. There are parallels with other highly complex industries where accuracy and logistical management are critical to safety and success. One example — air traffic control.

Continue Reading