Hospitals and healthcare systems are benefitting from unprecedented innovation in information technology, helping improve everything from facility operations to patient care. But with these advancements come massive amounts of data—clinical research, digital imaging, and other patient data—that are taxing IT’s ability to cost-effectively manage and store in way that is secure, compliant, and always accessible.
Between the introduction of smart connected medical devices, plummeting costs of genome sequencing, and increasingly higher-resolution medical imaging, we are generating a wealth of information that is too expensive to store, yet too valuable—and, in many cases, unlawful—to throw away. Analysts from IDC predict that healthcare data will reach 2.3 zettabytes (ZB) by 2020. Imagine the discoveries that await, if only there was an affordable way to store it all.
Connected Medical Devices Mean Better Care, nd More Data To Store
According to the U.S. National Library of Medicine, within the next three years, 40% of the projected $117 billion IoT industry will be related to healthcare. The IoMT will generate exabytes of additional data, a portion of which compliance regulations will mandate you save. But what if we could store it all? What breakthroughs await when the power of analytics and machine learning are unleashed on vast archives of medical data?
The Internet of Medical Things (IoMT)
Real-time diagnostic data from connected medical equipment and home-health wearables promises to revolutionize medicine. Patients with long-term or chronic conditions can be monitored from the comfort of their homes. Instant access to information will speed diagnoses and response times. But perhaps the greatest potential of the Internet of Medical Things (IoMT) lies in the ability to save and analyze all the data these interconnected devices will generate over time.
Medical Imaging and Records
Hospitals and healthcare facilities are drowning in data as highly sensitive cameras, light wave and electron microscopy, and new modalities like 3D mammography and ultrasonic holography produce higher resolutions and larger file sizes. Many organizations adopt a “save everything” approach to ensure compliance with complicated regulations. To mitigate the high cost of storing all this data, complicated storage tiers and data lifecycle management solutions are implemented. But trying to figure out what doctors and researchers need access to on a regular basis and what can safely go into cold storage makes these complicated tiering strategies even more complex … and expensive.
The Internet of Things (IoT) is taking hold in nearly every aspect of our lives. No longer are we content with simply connecting via a computer or mobile device. These days, our homes are filled with connected devices, all purporting to make our lives easier, more efficient, and in many cases, more entertaining.
However, the IoT’s creep isn’t limited only to our homes. One area where IoT is already taking hold and is expected to grow even more is in the health care industry. Often referred to as Medical IoT (or just connected medical devices), the adoption of connected devices is already at impressive levels and the trend is for even more devices to be accessible via the internet in the future.
For example, it’s not uncommon to find patients using wearable devices to collect and transmit data about their blood sugar, blood pressure, heart rate, and oxygen rate to their physicians, or to find wireless devices within hospitals that automatically transmit patient vital signs and other monitoring data straight from the hospital room to hospital staff, no matter their location. The assumption is that thanks to such continuous monitoring and real-time data, physicians can provide better quality care and improve patient outcomes.
Undoubtedly, the IoT certainly creates a great deal of opportunity within health care to deliver better outcomes. At the same time, though, there is also the question of the true value of connected devices in every circumstance. The fact is, while there is a certain “cool” factor associated with IoT technology, and a sense of wonder at the fact that a device can transmit data wirelessly, there is also a concern that developers will attempt to include connectivity just because they can. Unless the technology aligns with user expectations and behaviors, is reliable, and delivers actual meaningful outcomes — and doesn’t just add an unnecessary feature to the device — it is unlikely to be successful.
Therefore, when developing connected medical technology, it is just as important to consider why you are connecting it as it is to consider how you will connect it. Often, the how isn’t nearly as complicated as one might think, thanks to relatively inexpensive and widely available microcontrollers and applications. The why, on the other hand, is more complex, and requires developers to consider not only the potential benefits of connecting a medical device, but several other key points as well, among them the potential for data overload, the security of the devices, and addressing potential malfunction, to determine whether a device can benefit from connectivity.
Chief Concerns for Connected Medical Devices
While there are plenty of points to consider when developing any type of medical device, when the device is designed to be connected to the internet, there are additional things to think about.