Precision medicine encompasses a broad spectrum of technologies, sciences, and programs that emphasize tailoring medicine to the individual. These capabilities can empower clinicians to optimize treatment pathways and drastically improve patient outcomes, but the healthcare industry’s adoption of precision medicine technology has historically lagged.
Joe Spinelli, chief strategy officer of Aranscia, shares his predictions on how precision medicine tools will become more widely adopted in 2024 and beyond and explains what it takes for organizations to implement these programs successfully.
How is precision medicine evolving and in which areas of healthcare will it be most utilized in 2024?
This is an exciting time for precision medicine, as some of the more foundational work that’s been done over the past several decades in genomics, diagnostics, and artificial intelligence is finding meaningful applications in population health, rare disease treatments, and oncology. The evolutions the healthcare industry is experiencing now are less about the core/novel methodologies and have more to do with the effective practical utilization of those methodologies at scale across the spectrum of care.
What are some of the biggest, most recent healthcare hurdles precision medicine can help mitigate?
The evolution of precision medicine involves two distinct yet equally important initiatives: the development of innovative technologies and therapies to improve care on an individualized basis, as well as the effective utilization of those innovations within clinical care settings. Democratizing access to these types of precision medicine solutions through technology and workflow implementation will be a key factor in the clinical and economic success of these programs.
How will precision medicine solutions benefit providers from a business perspective this year?
As more care cohorts are attached to value-based initiatives and/or care models, multi-step processes of candidate identification, intervention, and outcomes tracking become increasingly important for care organizations and vendors alike to align on. In addition, companion diagnostic and biomarker programs will help providers and payers better align the cost and appropriate therapeutic use of innovative offerings.
Moving from inventing the first wheel ever to discovering the use of Artificial intelligence, we have come a long way. The world is changing for the better, and technological advancement has impacted numerous industries. And the healthcare industry is no exception.
The pandemic has highlighted several gaps in the accessibility of services to patients. Healthcare facilities have had to question old operating methods and adapt to better solutions for providing patients with better care. Moving into 2022, we can observe certain advancements in this sector. These are predictive of what improvements are likely to occur in the future. Listed below are some health-tech trends that are likely to impact the quality of care patients receive profoundly.
Better predictive analytics
The role of data is becoming prominent in improving healthcare services. Data helps identify trends in population health, thereby also helping to identify people at higher risk of developing specific medical issues. Such analysis includes gathering data from hospitals, specialists, primary care providers, and pharmacies. The information will help close gaps in providing patients with proper treatment on time. It will also help healthcare facilities manage a shortfall of resources during emergencies such as a pandemic.
Predictive analytics are likely to become more accurate and efficient in the future with more innovative data collection tools. It will help improve healthcare systems engineering, leading to better management and delivery of high-quality patient care.
Telehealth will become more common
In the past, access to healthcare depended on whether a patient could make it to a hospital or not. However, as communication and collaboration between different geographical locations increases, healthcare services will also expand. Telehealth is not a new idea, but it will gain popularity in the coming years. Doctors and nurse practitioners will be able to counsel patients over apps such as Zoom and other dedicated health portals.
Moreover, at-home testing kits will become more accessible, enabling patients to maintain privacy. According to the American Hospital Association, most healthcare services will be delivered at home or virtually by 2040. It will make healthcare much more accessible to people, especially those who live in remote areas.
By Joel Diamond, MD, FAAFP, an Adjunct Associate Professor of Biomedical Informatics at the University of Pittsburgh. He is a diplomat of the American Board of Family Practice and a fellow in the American Academy of Family Physicians. He cares for patients at Handelsman Family Practice in Pittsburgh and serves as chief medical officer for 2bPrecise.
In its earliest days, genetic and genomic testing typically fell under the purview of select specialties such as oncology, rare diseases and maternal-fetal medicine, but no longer. Increasingly, and appropriately, precision medicine is likewise finding a home within primary care.
It makes sense. The primary care provider (PCP) typically is the first-line point of access for a wide variety of medical services. Advances in genetic and genomic science equip PCPs with insights to speed accurate diagnosis of complex presenting conditions, improve medication safety for treatment of common conditions, and identify treatments and care plans most likely to produce desired outcomes.
Consider the value precision medicine can deliver in these three areas alone:
Improved medication safety. Healthcare has become adept at managing drug allergies, but lags in other areas that likewise influence medication safety and efficacy. Genetic variations drive how well – or poorly – a patient metabolizes a specific drug. If an individual is a fast metabolizer of clopidogrel, for example, his or her body will process it too quickly.
The medication may not provide appropriate protection against clotting which, in turn, has life-threatening consequences. Pharmacogenomic (PGx) testing provides PCPs with the information they need to select the safest, most effective medications for each patient. PGx is particularly valuable for PCPs treating behavioral health issues such as anxiety or depression (typical “trial-and-error” approaches delay therapeutic benefit for months), pain management (where efficacy is critical to timely recovery, management of comorbidities like high blood pressure and addiction avoidance) and common cardiovascular conditions like hyperlipidemia.
Precision medicine involves formulating treatments for individualized patients, typically with genetic sequencing that could shed light on the underlying causes of disease. It’s an amazing idea that could substantially reduce the likelihood of the same treatment curing one person and failing to help another.
However, some things still hold precision medicine back. Here are six ways it could advance.
1. Lower Research and Development Costs
Statistics indicate precision medicine is gaining momentum. For example, 70% of cancer drugs in development are precision-based, and 20% of research and development in the pharmaceutical sector relates to precision medicine.
Those are promising signs, but cost remains a significant factor that slows down the advancement of precision medicine. The research and development associated with it is more expensive than standard approaches because it involves genetic testing. Companion testing is often required to find biomarkers, as well as marker-negative patients.
Securing financial backing can be tricky, especially if investors or the financial decision-makers at pharmaceutical companies are still dubious about precision medicine’s potential.
2. More Patient Education
Many patients have heard about precision medicine in passing, but they don’t know what it entails or how to avail of it. Intermountain Healthcare, a Utah-based health system with nearly two dozen locations, found that a lack of patient education restricted its adoption of precision medicine. The organization began automatically referring metastatic cancer patients to a research clinic that used precision medicine.
There, patients had access to a proprietary system that checked for more than 160 genetic mutations associated with cancer by examining portions of a person’s genetic code. Then, people from a molecular tumor board interpreted the results, guiding doctors in setting up treatment plans for their patients.
Technology has evolved, and it has positively affected all areas of our lives. When it comes to technological advances and innovations in medical technology, it can be said that life has been made easier for us.
With new medical technology, we are assured of longer life span with credits to various medical innovations in medical technology. It would interest you to know that technological advances are basically medical innovations in medical practices which are aimed at giving life a better meaning.
Hence, the basic aim of these evolving technologies in the field of medicine is basically an increase in the lifespan and ensuring our overall state of health is improved.
Below are the most recent technological advances used in medicine:
CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats, and it is a new medical technology, which is at the highest level of advancement when it comes to gene-editing technology. CRISPR functions by tapping into the natural mechanisms that are found in the immune systems of bacterial cells, and it lacerates the DNA strands that have been infected.
The cutting ability of the CRISPR has the capacity to modify the conventional way of disease treatment. When some genes are modified, some diseases such as HIV and cancer could possibly be totally defeated in few years. Although, when you read most medical essays with an essay plagiarism checker, an essay check or an essay corrector, you will discover that there are still further inquiries into the full capacities of the CRISPR and the unknown benefits to the human race.
This is another new medical technology which fits into this technologically guided world. It basically means a form of promptly evolving technology which enables patients to access medical care via their medical devices, rather than go to the hospital for appointments with their doctor.
Currently, there are some highly-functional personalized applications that are developed for the purpose of allowing patients to interact virtually with medical professionals and get prompt medical advice and diagnosis.
Telehealth makes full provision for all patients to have various access means to healthcare the moment it is needed. It also comes in handy for those who have chronic health problems because it makes health care available at a regular, convenient and affordable means.
3. Virtual reality
Virtual reality has been in existence for quite a while, and there are medical advances that are being integrated into exploring the full capacities of this modern technology. With medical virtual reality, medical students have been afforded the opportunity of accessing close to real-life experience using this technology.
There are top modernized tools which aid them in gaining the experience needed by memorizing and practicing procedures as well as and producing a visual knowledge of the entire connection of the human anatomy.
If you check legit medical essays with an essay corrector or an essay checker, you will discover that virtual reality devices are a profound help for patients, providing diagnosis help, treatment schedule and making procedures available for them. They are also essential in patients’ rehabilitation recuperation.
Medical technology is advancing, and it becomes more personalized to patients individually. One of the benefits which precision medicine comes with is, it enables physicians to choose therapies and medicines for disease treatment, which includes cancer hinged on the genetic make-up of the patient.
This form of personalized medicine is way more effective than other forms of treatment, as it effectively treats tumors using the specific proteins and genes of the patient as the basis. This then causes gene mutations and makes it more effortlessly annihilated by cancer medicine.
In addition, precision medicine can also be used for rheumatoid arthritis treatment. It employs a mechanism of combating the vulnerable genes of the disease, in a bid to weaken it and lessen the symptoms and damage to the joint.
Few healthcare leaders doubt that insights made available
through precision medicine and genomics have the potential to vastly improve
care and outcomes.
But the industry struggles to overcome numerous barriers
that, at first glance, seem to obstruct providers’ ability to fully leverage precision
medicine. There is no question that obstacles exist, but a well-considered
strategy can help providers move quickly down a forward path.
Let us consider the six primary obstacles to leveraging precision
medicine to its fullest:
Provider education and expertise. Precision medicine, as an
influencer at the point of care, is a nascent discipline. Few physicians
practicing today were thoroughly educated in genomics (the depth of training is
increasing, however, according to a 2017 article in the Association
of American Medical Colleges News).
Physicians find themselves in a position of educating themselves quickly,
especially as the FDA approves more targeted immunotherapies and treatments. In
addition, because of the rise of direct-to-consumer tests, patients themselves
are demanding doctors factor this information into their clinical decision
making.
Slow-to-change standards of care. Without a doubt, delivery of
healthcare must be evidence-based. Genomic science has introduced so many
advances in such a short period of time, however, that many physicians remain
bound by approaches rapidly becoming outdated. The industry must find ways to
deliver new findings into the clinical workflow reliably and quickly, so
providers can utilize the best approach in each patient encounter.
Limited time to process new data. Physicians are already
presented with more data than they can effectively manage. Genomics represents
an entirely new and voluminous data set. To deliver any value, this information
must be rendered useful and readily available within the EHR. Access must be
smooth and seamless so physicians are not forced to leave their workflow to hunt
for relevant insights.
Foreign nomenclature. Currently, genomic results are returned
in PDFs (not as discrete data), rendered in vocabulary common to genomic
researchers and scientists. It must be “translated” into meaningful clinical
nomenclature and then integrated into the current workflow to be fully useable.
Regulatory and liability concerns. Genomic results do not
represent a snapshot in time the way phenotypical information might. A
patient’s genetic variant could impact care decisions well into the future as
the individual’s condition changes and genomic science advances. How does a
provider store and manage genomic data, making sure that its very existence
does not create liability issues in the years ahead?
Lack of or sluggish reimbursement. Payer policies and
guidelines lag behind discoveries related to precision medicine. What
reimbursement exists varies greatly from payer to payer and is founded on
disparate understandings of medical necessity. While payment is becoming more
common, physicians nevertheless must consider the financial impact of ordering
a genomic test – and what they will do if the results indicate that an
expensive or uncommon treatment is the best choice for a particular patient.
Innovation and Strategy
Key to Success
While these issues are complex, they are not insurmountable.
Savvy healthcare leaders are establishing precision medicine strategies today
in recognition that the landscape will become only more complicated.
Visionaries and early adopters are implementing scalable
informatics infrastructure as the backbone of their precision medicine
initiatives. Many of the obstacles above can be addressed by an
enterprise-spanning platform that:
Synthesizes genomic data with clinical
information into an ontology that creates a comprehensive view of the patient.
This compendium can then be delivered through the EHR, presented in a
meaningful vocabulary, where it can be actively used in real-time clinical
decision making. In addition, providers are able to reference evidence for
their decisions, which could help support medical necessity appeals and
short-circuit prior authorization processes.
Delivers fingertip access to multiple curated
knowledge bases. Physicians can re-interrogate a patient’s genomic data against
the latest scientific findings to ensure current standards are followed – now
and far into the future. This also gives physicians access to resources so they
can keep abreast of this rapidly changing field and helps shield them from
future liability.
Enables broad usage of precision medicine tools.
The value of genomic insights is curtailed when data is siloed in a specialty-
or department-specific system. Making functionality available across clinical
areas gives all providers access to data that might impact care and outcomes.
The future of healthcare has been made more exciting because
of precision medicine and genomics. With a well-considered strategy, healthcare
leaders can begin to leverage value today and prepare themselves to be
successful for years to come.
Few healthcare leaders doubt that insights made available through precision medicine and genomics have the potential to vastly improve care and outcomes.
But the industry struggles to overcome numerous barriers that, at first glance, seem to obstruct providers’ ability to fully leverage precision medicine. There is no question that obstacles exist, but a well-considered strategy can help providers move quickly down a forward path.
Let us consider the six primary obstacles to leveraging precision medicine to its fullest:
Provider education and expertise. Precision medicine, as an influencer at the point of care, is a nascent discipline. Few physicians practicing today were thoroughly educated in genomics (the depth of training is increasing, however, according to a 2017 article in the Association of American Medical Colleges News). Physicians find themselves in a position of educating themselves quickly, especially as the FDA approves more targeted immunotherapies and treatments. In addition, because of the rise of direct-to-consumer tests, patients themselves are demanding doctors factor this information into their clinical decision making.
Slow-to-change standards of care. Without a doubt, delivery of healthcare must be evidence-based. Genomic science has introduced so many advances in such a short period of time, however, that many physicians remain bound by approaches rapidly becoming outdated. The industry must find ways to deliver new findings into the clinical workflow reliably and quickly, so providers can utilize the best approach in each patient encounter.
Limited time to process new data. Physicians are already presented with more data than they can effectively manage. Genomics represents an entirely new and voluminous data set. To deliver any value, this information must be rendered useful and readily available within the EHR. Access must be smooth and seamless so physicians are not forced to leave their workflow to hunt for relevant insights.
Foreign nomenclature. Currently, genomic results are returned in PDFs (not as discrete data), rendered in vocabulary common to genomic researchers and scientists. It must be “translated” into meaningful clinical nomenclature and then integrated into the current workflow to be fully useable.
Regulatory and liability concerns. Genomic results do not represent a snapshot in time the way phenotypical information might. A patient’s genetic variant could impact care decisions well into the future as the individual’s condition changes and genomic science advances. How does a provider store and manage genomic data, making sure that its very existence does not create liability issues in the years ahead?
Lack of or sluggish reimbursement. Payer policies and guidelines lag behind discoveries related to precision medicine. What reimbursement exists varies greatly from payer to payer and is founded on disparate understandings of medical necessity. While payment is becoming more common, physicians nevertheless must consider the financial impact of ordering a genomic test – and what they will do if the results indicate that an expensive or uncommon treatment is the best choice for a particular patient.
With hundreds of thousands of clinical trials currently underway worldwide, we are continuously seeing innovation applied to how we treat and cure diseases, but the traditional four-phase method of getting there has not been updated since 1963. What makes this antiquated process for pharmaceutical companies and long wait time for patients in need worth it is the promise of a safe and effective therapy for the vast majority of patients.
This promise, however, is negated before the clinical trial begins when pharmaceutical companies opt to perpetuate the creation of blockbuster treatments for the “average” patient that disregards individual patient disease biology.
The cost of ineffective treatment for both patients and the healthcare industry is high in many ways, and there is a clear need to change the process to bring more effective treatments to market. The current system was developed to provide blanket treatments for a particular disease without considering the disease biology of individuals. Moving forward, pharmaceutical companies first need to study the individual’s disease and then create a personalized treatment for patient subgroups within each therapeutic area.
Precision medicine technology holds the key to meet this need and could change the current clinical trial system that has been in place for years. Companies are working on technology such as this to enable more targeted trials that are smaller, nimbler, equally as effective and safe, and encourage the creation of personalized treatments to finally break the cycle of expensive, ineffective blanket treatments.
Enabling smaller, more effective and affordable trials
For years, patients and doctors have started to become exasperated with this traditional, slow-moving clinical trial model and are searching for a more personalized route as an alternative. Precision medicine offers the unique ability to deeply understand the genetic makeup of patients’ diseases, which in turn would enable the development of better drugs with clinical trials that consist of sample sizes based on genetic disease make-up rather than phenotypic expressions.
Backed by preliminary research into the patients being treated, these smaller and more targeted trials can hypothetically be conducted more rapidly and at lower costs, allowing for breakthrough therapies to come to market faster at potentially more affordable prices.