Apr 30
2014
Health IT and Data: Don’t Forget the Patient
Guest post by Anil Jain, MD, FACP, chief medical officer, Explorys, and staff, Department of Internal Medicine, Cleveland Clinic.
Nearly every aspect of our lives has been touched by advances in information technology, from searching to shopping and from calling to computing. Given the significant economic implications of spending 18 percent of our GDP, and the lack of a proportional impact on quality, there has been a concerted effort to promote the use of health information technology to drive better care at a lower cost. As part of the 2009 American Reinvestment and Recovery Act (ARRA), the Health Information Technology for Economic and Clinical Health (HITECH) Act incentivized the acquisition and adoption of the “meaningful use” of health IT.
Even prior to the HITECH Act, patient care had been profoundly impacted by the use of health information technology. Over the last decade we had seen significant adoption of electronic health records (EHRs), use of patient portals, creation of clinical data repositories and deployment of population health management (PHM) platforms — this has been accelerated even more over the last several years. These health IT tools have given rise to an environment in which providers, researchers, patients and policy experts are empowered for the first time to make clinically enabled data-driven decisions that not only at the population level but also at the individual person level. Not only did the 2010 Affordable Care Act (ACA) reform insurance, but it also has created incentive structures for payment reform models for participating health systems. The ability to assume risk on reimbursement requires leveraging clinical and claims data to understand the characteristics and needs of the contracted population. With this gradual shift of risk moving from health plans and payers to the provider, the need to empower providers with health IT tools is even more critical.
Many companies such as Explorys, a big data health analytics company spun-out from the Cleveland Clinic in 2009, experienced significant growth because of the need to be able to integrate, aggregate and analyze large amounts of information to make the right decision for the right patient at the right time. While EHRs are the workflow tool of choice at the point-of-care, an organization assuming both the clinical and financial risk for their patients/members needs a platform that can aggregate data from disparate sources. The growth of value-based care arrangements is increasing at a staggering rate – many organizations estimate that by 2017, approximately 15 percent to 20 percent of their patients will be in some form of risk-sharing arrangement, such as an Accountable Care Organization (ACO). Already today, there are currently several hundred commercial and Medicare-based ACOs across the U.S.
There is no doubt that there are operational efficiencies gained in a data-driven health system, such as better documentation, streamlined coding, less manual charting, scheduling and billing, etc. But the advantages of having data exhaust from health IT systems when done with the patient in mind extend to clinical improvements with care as well. We know that data-focused health IT is a necessary component of the “triple-aim.” Coined by Dr. Donald Berwick, former administrator of the Centers for Medicare and Medicaid Services (CMS), the “triple-aim” consists of the following goals: 1) improving health and wellness of the individual; 2) improving the health and wellness of the population and 3) reducing the per-capita health care cost. To achieve these noble objectives providers need to use evidence-based guidelines to do the right thing for the right patient and the right time; provide transparency to reduce unnecessary or wasteful care across patients; provide predictive analytics to prospectively identify patients from the population that need additional resources and finally, use the big data to inform and enhance net new knowledge discovery.