Tag: predictive analytics

Hospitals Must Look to Predictive Analytics to Improve Efficiency

By Rich Krueger, CEO, Hospital IQ.

Rich Krueger
Rich Krueger

With digital information flowing from countless sources, including electronic health records (EHRs), wearable devices and digital maps that monitor global disease outbreaks, the healthcare industry is taking a big data approach to improving patient outcomes and enhancing the daily lives of countless others.

Yet one large part of the healthcare ecosystem isn’t efficiently capitalizing on the vast amount of data that is right at their fingertips: hospital operations. Many leaders and line managers are unable to take advantage of the readily available data sets from the billions of dollars invested in IT systems that would allow them to improve operational efficiency and provide an exceptional level of care. Instead, they rely largely on spreadsheets and back-of-the-envelope math along with first-hand experience to make critical daily operational decisions, such as scheduling operating rooms and reducing emergency department boarding.

Some hospitals have recognized that driving growth starts with superior planning and optimization. These forward-thinking facilities are leveraging their data using a hospital operations management software platform to revolutionize the operational and financial performance of various parts of their organization including ED, inpatient, perioperative and clinics.

The result? Higher resource utilization, better quality of care, satisfied employees and increased revenue.

Tap existing data resources to create growth

The OR suite’s multifaceted nature makes it extremely difficult to optimize for overall efficiency. As a result, millions of dollars are wasted each year. Still, it’s a primary financial driver for most hospitals and presents one of the largest opportunities for increasing profit margins through operational improvements.

In efforts to improve services while reducing expenses, perioperative leaders have been dependent on consultants, manual spreadsheets, and trial-and-error experimentation, leading to results that are often inaccurate, time-consuming, and have significant lag time to understand impact. These traditional methods should be abandoned.

Hospitals must embrace new analytics software platforms to deliver a practical application of analytics to the business of healthcare.

Predictive analytics utilizes the data gathered from existing EHRs, bed management, case management systems and external sources (such as weather) to quickly and easily see the potential impact of scheduling, staffing, and case mix changes. It empowers hospital leaders to develop optimized block and OR schedules that are easily managed and automates the staff planning and assignment process, all the while complementing traditional time and attendance systems.

At a time when hospitals cannot afford to mismanage valuable resources, analytics prevent costly trial and error and help hospitals overcome operational shortcomings in their perioperative suite. By testing “what if” scenarios, facilities can predict and manage the impact of operational changes for little expense or exposure.

Analytics software programs demonstrate measureable impact in OR operations. Impressively, analytics enabled a nonprofit medical center in Boston to increase its annual OR volume by three percent and improve utilization by more than five percent, resulting in an annual revenue increase of more than $3 million. And in New Jersey, a regional medical center used analytics to improve its OR utilization to 71 percent and improve labor productivity by 10 percent.

Continue Reading

Divining the Future of Healthcare with Predictive Analytics

Guest post by Sanjay Govil, founder and chairman, Infinite Computer Solutions

Sanjay Govil
Sanjay Govil

It’s impossible to see the future with certainty, but one branch of technology is playing a leading role in helping institutions and industries predict, on the basis of empirical research, the future behavior of participants and the outcomes of their decisions.

This relatively new branch of tech – predictive analytics (or PA) – has made inroads at a steady clip in the marketing, manufacturing and financial services industries. It is now gaining traction in healthcare as well.

Although debates around its ethical applicability to healthcare persist – the debate around data privacy, for one – the consensus emerging across the board is that with the right skills and in the right hands, PA has the power to effectively address challenges in the healthcare ecosystem in ways that human intelligence alone cannot.

Let us examine a few recent examples.

The power of PA

The Gold Coast Health Hospital in Southport, Queensland, Australia, dramatically improved patient outcomes and hospital staff productivity by applying a predictive model that was able to project with 93 percent accuracy emergency admissions before they happened. By analyzing admission records and details of sundry circumstances that led to patient admission to the ER, hospital staff were able to know how many patients would be coming in, on any day of the year, what they would be coming in for and methodically plan procedures that were now for all purposes elective rather than urgent.

Similarly, the El Camino hospital in California was able to drive a dramatic turn-around in its high rate of patient falls by collaborating with a tech company. The company, Qventus, linked patient EHR to bed alarm and nurse call light usage to derive an algorithm that was able to alert nurses in real time about the high-risk patients under their care and the exact times when they were most likely to be vulnerable. The result was a whopping 39 percent reduction in falls, improvement in patient health outcomes and a dramatically improved reputation for the hospital.

In fact, it isn’t only hospitals that are alive to the potential of analytics. Tech companies too are cognizant of how some of the newest technologies being developed under their roofs have immediate relevance to healthcare outcomes. In a paper published earlier this year, researchers associated with Google demonstrated how deep learning algorithms were able to correctly identify metastasized cancer tissue with nearly 90 percent accuracy as compared to just 73 percent when done by a human pathologist.

Continue Reading

Predictive Analytics: Precision Planning for Healthcare’s Most Important Resource – Its People

Guest post by Jackie Larson, president, Avantas.

Jackie Larson
Jackie Larson

Predictive analytics and advanced labor management are the most important – and underutilized – methods to assure that provider organizations have the right caregivers in the right places at the right times.

A recent survey of nurse managers by AMN Healthcare and Avantas, Predictive Analytics in Healthcare 2016: Optimizing Nurse Staffing in an Era of Workforce Shortages, (available on the AMN website) brought the need for more awareness to light in just a few stats related to staffing and scheduling:

The survey also revealed a lack of sophisticated scheduling tools being utilized:

Further, the survey found that while nearly 90 percent of nurse managers said that a technology that can accurately forecast patient demand and staffing needs would be helpful, 80 percent were unaware that such a solution exists.

Strategies to Fulfill the Potential Predictive Analytics

This process to predict future patient demand and strategically plan clinician scheduling and staffing is scalable, cost effective and accurate. First, staffing data are processed with advanced algorithms, then forecasting models are created and validated, customized for each unit or service area within the organization, allowing workforce projections up to 120 days prior to the shift. The forecast is updated weekly, and by 30 days in advance of the shift, the forecast of staffing need is 97 percent accurate.

Compared to how scheduling and staffing is conducted at most healthcare organizations today, predictive analytics may seem like something out of a sci-fi movie. The truth is, this sophisticated forecasting of labor needs has been leveraged in other industries with great success. And, in healthcare, it can lay the foundation for significant advancement in utilization of staff, leading to improvements in morale, quality, and financial results. The advanced labor management strategies and tools layered on an accurate projection of staffing needs – months and weeks in advance of the shift – will turn an accurate forecast into an effective resource management strategy.

Adopting Workforce Analytics
Every organization’s staffing mix should be unique to the fluctuations in its patient volume. Once an organization understands its demand, it can then determine its supply – scheduling and staffing to meet patient demand in the most productive manner possible. The organization can analyze and solve the problems that reduce its available supply of core staff, such as leaves of absence, continuing education, training and other issues. This precision understanding of workforce availability is then layered with patient volume predictions, and the result is accurate insight into the core and contingency staffing levels needed to meet patient demand.

Continue Reading

It’s 6 a.m.: Do You know Where Your Patients Are? And Where They’ll Be Next?

Guest post by Dan Hickman, chief technology officer, ProModel.

Dan Hickman
Dan Hickman

With six in 10 U.S. hospitals functioning at operational capacity, patient flow optimization provides one of the most cost-effective ways to increase a hospital’s bottom line.

Around 6 a.m. every day, hospital-wide “huddles” occur to discuss and determine a collective understanding of the state of operations. Most of these huddles take less than an hour and provide hospital and departmental leaders a snapshot of census status and expected discharges.

But hospitals are complex, dynamic systems. By 7 a.m. a flood of patients could hit the ED, affecting everything from staffing to the census, and carefully crafted plans disintegrate.

Consider the current state of patient flow at most hospitals.

Most health systems today have a reactionary approach to admit, transfer and discharge (ADT), patient flow, census, and staffing. Moreover, there is no way of accurately predicting future patient flows to right-size staffing and optimize workflows.

Discharge processes are open loop, resulting in costly delays. Most hospital staff use spreadsheets stating the number of discharges planned for the next 48 hours. However, there is no way to look at patient census with diagnosis codes tied to the typical length of stay.

The current state of patient flow results in multiple problems:

Hospitals are really good at examining what’s happened to a patient in the past. The staff knows where they’ve been, but they haven’t taken the next leap, which other industries have, at projecting out where they think patients will “flow” during their stay and how the next 24 to 48 hours could affect the status and the census. There are parallels with other highly complex industries where accuracy and logistical management are critical to safety and success. One example — air traffic control.

Continue Reading

Health IT Startup: Medalogix

Founded in 2012 by former home health agency owner Dan Hogan, Medalogix has been recognized by Harvard University, HIMSS and Fierce Healthcare IT as an innovative solution that’s improving America’s Healthcare system. Medalogix currently offers two solutions, Touch and Bridge.

Medalogix offers patient outcome management (POM) solutions that use a combination of predictive analytics, workflows and business intelligence engines to improve quality and reduce costs.

Elevator pitch

We’re a healthcare tech company that provides analytics and workflows to home health providers so they can improve care and reduce costs.

Medalogix currently offers two predictive analytic workflow solutions to home health providers:

Founder’s story

Daniel Hogan
Dan Hogan

Prior to founding Medalogix, Dan Hogan owned and operated a home health agency. As the industry moved toward digital patient records, he realized there was an opportunity to analyze those streamlined data sets to detect health risks the human eye might miss. He researched to find a tool that could do this, and came up empty handed. He decided to take matters into his own hands and incorporated Medalogix in February 2009.

Marketing/promotion strategy

Currently, Medalogix integrates with leading home health and hospice EMR. We market to their users through webinars, industry conferences and referrals through existing satisfied Medalogix users.

Continue Reading

Health IT Startup: RightPatient

RightPatientRightPatient is a division of M2SYS Technology, an ISO 9001:2008 certified company and  biometric technology solution provider. M2SYS has more than a decade of biometric technology experience, with more than 300 million enrolled users in more than 100 countries.

Elevator pitch

RightPatient is the industry’s most advanced biometric patient identification, patient engagement, personalized healthcare and healthcare intelligence platform to reduce costs and liability, improve quality of care, monitor population health and enhance the patient experience. With features for wearable and biosensor integration, health games, medication alerts, proactive health management and predictive analytics, the platform also integrates with major electronic health record (EHR) systems such as Epic, Siemens, Cerner, McKesson, Meditech, IBM and many others. RightPatient is already deployed across hospitals and health systems that collectively maintain the health data of over 10 million patients.

Product/service description

RightPatient is the industry’s most advanced patient identification, patient engagement, personalized healthcare, and healthcare intelligence platform to reduce costs and liability, improve the quality of care, monitor population health, and enhance the patient experience. Our healthcare ecosystem unifies clinical knowledge through data aggregation, deep learning, and predictive analytics to personalize medicine, improve outcomes, and reduce re-admissions.

Founders’ story

Mizan Rahman
Mizan Rahman

Our founder and CEO Mizan Rahman immigrated to the U.S. in the late 1990s seeking to turn some of his ideas, education, and experience into tangible products that solved problems for different verticals. He has successfully shepherded two companies from startup to a multi-million dollar companies that were eventually bought out.

Mizan now oversees the strategic and operational interests of the company worldwide combining his software engineering experience and entrepreneurial leadership with comprehensive international market intelligence to solve customer problems through identity solution ingenuity. He has successfully shepherded the growth of M2SYS as a global force in identity management, pioneering the development and launch of M2SYS’ Bio-Plugin biometric middleware and Hybrid Biometric Platform – both of which were recognized by Frost and Sullivan with prestigious awards for their design innovation.

Mizan continues to be recognized for his innovation and leadership in the field of biometric identification technology, most recently as recipient of “Technology Innovator of the Year” by InfoWorld. He is a frequent speaker in many US and international conferences, symposiums and universities such as the International Biometric Conference and MIT.

Continue Reading

The Power of Predictive Analytics in Healthcare, Told through a Netflix Lens

Dan Ward is VP of revenue integrity at MethodCare, now part of ZirMed.

To better understand the fundamentals of predictive analytics — and why it has the potential to transform healthcare — it can be helpful to use Netflix as an illustrative example.

Let’s say, for example, you’re sitting around the house one rainy October Saturday and decide to view a few movies using Netflix’s streaming service. First you watched Field of Dreams then you decided, hey, this rain isn’t letting up any time soon, and that dog doesn’t want to go out in it any more than I do. So, after a brief backyard sojourn during which you and the dog confirmed that 38 degrees and rainy is in fact unpleasant — you reconvened your Netflixing and ended up watching Bull Durham, as well. Further, let us also assume that you enjoyed both movies and watched them all the way through.

As the credits rolled on Bull Durham, the critical question for Netflix was the same it always is: What would you enjoy watching next — specifically, what should Netflix recommend? Based upon the day’s viewing you may have a soft spot for baseball movies. Though it could just as easily be the case that you’re Kevin Costner’s biggest fan and the fact that you queued up two of his baseball movies was pure coincidence.

Given the uncertainty orbiting these pieces of information, maybe the best prediction would be Dances with Wolves, starring Kevin Costner. Or maybe the right pick would be Moneyball, the story of how the Oakland A’s leveraged data-driven, evidence-based sabermetrics to remain competitive against much more highly capitalized MLB teams. But what if neither Kevin Costner nor baseball is the most important correlation—what if the best predictor of whether you’ll like a film is simply whether it’s a sports movie from the late 80s?

As with all forms of predictive analytics, the question of what to recommend multiplies in complexity as overlapping variables (often in the form of unstructured data) are added and subsequently considered within algorithmic equations that power, in this case, Netflix’s recommendation engine. Further complicating the matter, it’s likely that you’re not the only person to have watched both of these films in close proximity and there are likely to be numerous “motivations” for such viewings across the population. It becomes apparent rather quickly the inherent challenge of something that seems, on the surface, as straightforward as a recommendation engine.

In healthcare we face these same kinds of challenges, just in a different form. The questions we ask are which gaps in care create the greatest risk for the patient, or which specific combinations of gaps in care correlate with readmissions—so that clinical outreach coordinators and other staff can prioritize whom to contact right away. We ask which types of claims are most likely to be under-coded or missing charges—so that organizations can make best use of finite resources like staff time and ensure the greatest positive impact on overall financial performance.

Continue Reading

Reducing Hospital Readmissions and Improving Quality of Care

Dane Hallberg
Dane Hallberg

Guest post by Dane D. Hallberg, strategic advisor, M3 Information.

Hospital readmissions continue to be a major contributor to soaring healthcare costs and a drain on the U.S. economy. According to the Robert Wood Johnson Foundation, 4.4 million hospital readmissions account for $30 billion every year, while 20 percent of Medicare patients are expected to return to the hospital within 30 days of discharge. The Affordable Care Act of 2010 requires the U.S. Department of Health & Human Services to establish a readmission reduction program.

This program provides incentives for hospitals to implement strategies to reduce the number of costly and unnecessary hospital readmissions. Centers for Medicare and Medicaid Services (CMS) has created quality programs that reward healthcare providers and hospitals with incentive payments for using electronic health records (EHR) to promote improved care quality and better care coordination. The reasons for hospital readmissions include adverse drug effects (ADE), lack of a proper follow-up care, inability of patients to understand the importance of their medications and diagnoses, unidentified root causes, and misdiagnosis. Technology could play a vital role here by properly documenting, tracking, diagnosing, monitoring, and enabling better communication between patient and provider.

Adverse drug events constitute the majority of hospital readmissions. A cohort study, including a survey of patients and a chart review, at four adult primary care practices in Boston (two hospital-based and two community-based), involving a total of 1202 outpatients indicated that 27.6 percent of these ADEs were preventable, of which 38 percent were serious or fatal. Human error was the leading contributor to these ADEs, followed by patient adherence. Additionally, patients who screened positive for depression were three times as likely to be readmitted compared to others.

Our analysis indicates that 28 percent of adult hospital stays involved a mental health condition. A study of Medicaid beneficiaries in New York State determined that, among patients at high risk of rehospitalization, 69 percent had a history of mental illness and 54 percent had a history of both mental illness and alcohol and substance use. We know that a properly implemented mental health screening protocol can lead to effective diagnosis, and that proper management of these issues can positively impact the reduction of hospital readmissions.

Further studies show that most cases of readmissions for certain chronic conditions have an underlying mental health issue, which appears in patients who have not been previously diagnosed for a mental health condition (i.e., anxiety, bipolar disorder or depression). For example, anxiety and/or depression increases the risk of stroke and decreases post-stroke survival, and plays a key role in diabetes treatment as 33 percent of this patient population is found to be depressed and patients with bipolar disorder have reduced life spans. Other cases where depression affects the patient’s survival and treatment cost include hypertension, stable coronary disorder, ischemia, unstable angina, post myocardial infarction and congestive heart failure.

An important point to note: congestive heart failure is the major driver of hospital readmissions in the U.S., accounting for 24.7 percent of all readmissions. Another study concluded that patients with severe anxiety had a threefold risk of cardiac-related readmission, compared to those without anxiety.

Continue Reading

Health IT and Data: Don’t Forget the Patient

Anil Jain
Anil Jain

Guest post by Anil Jain, MD, FACP, chief medical officer, Explorys, and staff, Department of Internal Medicine, Cleveland Clinic.

Nearly every aspect of our lives has been touched by advances in information technology, from searching to shopping and from calling to computing. Given the significant economic implications of spending 18 percent of our GDP, and the lack of a proportional impact on quality, there has been a concerted effort to promote the use of health information technology to drive better care at a lower cost. As part of the 2009 American Reinvestment and Recovery Act (ARRA), the Health Information Technology for Economic and Clinical Health (HITECH) Act incentivized the acquisition and adoption of the “meaningful use” of health IT.

Even prior to the HITECH Act, patient care had been profoundly impacted by the use of health information technology. Over the last decade we had seen significant adoption of electronic health records (EHRs), use of patient portals, creation of clinical data repositories and deployment of population health management (PHM) platforms — this has been accelerated even more over the last several years. These health IT tools have given rise to an environment in which providers, researchers, patients and policy experts are empowered for the first time to make clinically enabled data-driven decisions that not only at the population level but also at the individual person level. Not only did the 2010 Affordable Care Act (ACA) reform insurance, but it also has created incentive structures for payment reform models for participating health systems. The ability to assume risk on reimbursement requires leveraging clinical and claims data to understand the characteristics and needs of the contracted population. With this gradual shift of risk moving from health plans and payers to the provider, the need to empower providers with health IT tools is even more critical.

Many companies such as Explorys, a big data health analytics company spun-out from the Cleveland Clinic in 2009, experienced significant growth because of the need to be able to integrate, aggregate and analyze large amounts of information to make the right decision for the right patient at the right time. While EHRs are the workflow tool of choice at the point-of-care, an organization assuming both the clinical and financial risk for their patients/members needs a platform that can aggregate data from disparate sources.  The growth of value-based care arrangements is increasing at a staggering rate – many organizations estimate that by 2017, approximately 15 percent to 20 percent of their patients will be in some form of risk-sharing arrangement, such as an Accountable Care Organization (ACO). Already today, there are currently several hundred commercial and Medicare-based ACOs across the U.S.

There is no doubt that there are operational efficiencies gained in a data-driven health system, such as better documentation, streamlined coding, less manual charting, scheduling and billing, etc. But the advantages of having data exhaust from health IT systems when done with the patient in mind extend to clinical improvements with care as well.  We know that data-focused health IT is a necessary component of the “triple-aim.” Coined by Dr. Donald Berwick, former administrator of the Centers for Medicare and Medicaid Services (CMS), the “triple-aim” consists of the following goals:  1) improving health and wellness of the individual; 2) improving the health and wellness of the population and 3) reducing the per-capita health care cost. To achieve these noble objectives providers need to use evidence-based guidelines to do the right thing for the right patient and the right time; provide transparency to reduce unnecessary or wasteful care across patients; provide predictive analytics to prospectively identify patients from the population that need additional resources and finally, use the big data to inform and enhance net new knowledge discovery.

Continue Reading

2014 Health IT Trends: Technology Set to Tackle Inefficiency in Healthcare

Neal Benedict
Neal Benedict

Guest post by Neal Benedict, healthcare CEO at Verdande Technology.

Over the past year, economic pressure and regulatory changes have increased scrutiny around areas of inefficiency within the healthcare industry. With new policies like the Affordable Care Act creating the need to improve patient outcomes and prevention, 2014 will be the year for much needed efficiency upgrades across the board at hospitals. And with mounting pressure to cut costs amidst anticipated physician and other major shortages, new and innovative ways to leverage technology will be called upon to usher in changes for the healthcare industry.

The business of care will continue to be a major area of focus for hospitals in 2014. Preventable, adverse events because of medical errors cost the healthcare industry more than $29 billion in 2013 and have led to between 50,000 to 100,000 deaths each year. Healthcare professionals and hospitals cannot afford to continue accepting medical errors as balance sheet losses, which are not only jeopardizing profitability, but patient care. To save money and improve patient care at the same time, hospitals will look to learn from technology being used successfully by other industries in 2014 to enhance real-time analysis and, thereby, prevention and outcomes.

Continue Reading